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1. Introduction 

Suppose k is a field, U= @p”=O r/i is a graded vector space over k with dim Ui<m 
and Y(U)(t) = Cp”=, (dim Ui)t’ E Z[[t]]. This is the Hilbert (generating) function of U 
and we shall describe [‘P(U)(t)]-’ when U is a graded k-algebra with Uo= k. 

For a vector space V over k let TV, A V and SV denote the tensor, exterior and 
symmetric algebras on V. Let DV denote SV/((ow) o, ,,,< v>. With their usual grading 

one can verify 

[YY(DV)(t)l[~Y(TV)(-t)l= 19 (1.1) 

[Y/(SV)(t)l[Y/(/1V)(-t)l= 1. (1.2) 

The appropriate K-theoretic generalization of (1.2) appears in [l, p. 528, (8.4)]. 
This beautiful and mysterious result lead to the present paper. 

In both cases (1 .I) and (1.2) there are natural graded vector space isomorphisms 

TVr To?(k, k), A V%TorSY(k, k), (1.3) 

which suggests the following conjecture: 
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Suppose U is a graded k algebra with We = k. Then 

I~v(v>(f)lIYu(Torc/(k,k))(-t)l = 1. (1.4) 

As it stands the conjecture is false but on the right track. A bigrading on 
TorU(k, k) comes into the picture. For a suitably bigraded vector space M 

> 
tj. (1.5) 

‘Suitably’ refers to the fact that for fixed j,Mu = {0} for large i. The main theorem 
(2.10) of this paper is that (1.4) is true with Y(TorU(k,k))(-r) replaced by 
@(Tor’/(k, k)). The reason that (1.1) and (1.2) hold with Y instead of @ is that the 
bigrading on Tor in those cases is concentrated on the diagonal. This is also why the 
‘-t’ appears there but not with @. 

We state the (corrected) (1.4) in Theorem 2.10 and prove it at 3.12. U need not be 
commutative and we work in the appropriate K-theoretic setting without presuming 
any knowledge of K-theory. The needed ideas are developed in the first few 
paragraphs of Section 2. 

A final word about computing @. Notice in (1.5) the inner sum is an alternating 
sum of dimensions. Given a finite complex of finite dimensional vector spaces, the 
alternating sum of dimensions is a homology invariant. This is the key to computing 
Q(M), Proposition 3.11. At two points in the proof of the main theorem we put a 
differential on a bigraded module M and replace Q(M) by @(H(M)). Then we 
recognize H(M). In the first case H(M) = TorU(k, k) and in the second case - for a 
differentM - H(M) collapses. 

2. Preliminaries and statement of the theorem 

For the duration A and S are commutative rings, ,X is the class of finitely 
generated projective A-modules and for each ME ,/( there is (M] e S where [ ] has 
the following properties for A, M’, M, b4” E .I(: 

(2.1.i) [A] = Is. 

(2.l.ii) [M]=[M’]+[M”] if O--*M’-M+M”-0 is an exact sequence of 
A-modules. 

(2.l.iii) [M][M’] = [M@M’]. 

It is easy to verify that for {0}, M, M’ E -4: 

(2.2.iv) [{O}] =Os where (0) is the zero module. 
(2.2.~) [M] = [M’] if MEM’ as A-modules. 

(2.2.vi) [MOM’] = [M]@[M’]. 

The universal such S for a given A is K*(A). This defines Ko(A). 
The classical example of such A, S, ,/i’ and [ ] is where A is a field, J?’ is ‘finite 

dimensional vector spaces over A’, S = E and [M] = dim, M. 

We use /ZI to denote the set {0,1,2, . ..). 
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2.3. Definition. We let .A’” denote the class of ) Zj -graded projective A-modules of 

the form U=@,, z, Ui where for each i, U, E J?. For such U the grading is part of 
the structure of U and we can define 

(2.4) 

If U,,zA as A-modules then Y(U)= 1 + Cp”=, sir’, an invertible power series in 
S[[t]J. The purpose of this paper is to find a V arising naturally from U where 
ul( V) = Y(U)-‘. For this purpose we shall have to extend the definition of !?’ to 
bigraded modules. Notice that if U, VE~‘I and if U@ V has the usual graded 
tensor product structure then U@ VE..~ ihi and Y(U@V)= Y(U)Y(Y). This is an 
easy consequence of (i)-(vi). 

2.5. Definition. A row finite IZ)-bigraded A-module is an A-module of the form 

C= OOsr.ksZ Cik where for fixed k: C;k= (0) for large i. _llE12 denotes the class of 
row finite IZI-bigraded A-modules C where C,, E ._& for each i and k. 

For C E Uliz12 define 

(2.6) 

The inner sum is finite since for fixed k: Ci, is zero for large i. 

For [Z 1 -bigraded A-modules C and D let 

and 

(COD),, = O CikODj/ 
it,=n 
k+/=m 

COD= @ (C@D),,,,. 
m,ne’Z, 

(2.7) 

(2.8) 

This defines the liZI-bigraded A-module structure on COD. It is easy to check that 
C@D is row finite if both C and D are. Also, that C@DE.J~“I’ if C, DE-/( = ‘. 

2.9. Lemma. Suppose UE .@ and C, D E y/c~z12. 
(a) If U' is the j ii’/ -bigraded A-module defined by 

U;, = 
t 

uk for i=O, 

(0) otherwise 

then U’EJI~I~ and @(U’) = Y(U). 
(b) @(C)@(D) = @(C@D). 

Proof. (a) This is easy and left to you. (b) Calculate 

f 2 (-)‘[Cik]fk 
k=O,=O >( 

,go ,IFo ( - )‘Io,ilt’) 
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The element of JJ~~I’ to which we must apply @ is a certain Tor. Usually Tor is 
only singly graded. The bigrading on Tor comes from the bar resolution used to 
calculate Tor for a graded algebra. This may be taken as an ad hoc definition of the 
bigrading on Tor but the bigrading is natural in the category of graded modules for 
graded algebras. Here are a few words to that point. 

If U is a ]Z\-graded A-algebra (i.e. an A-algebra and JZ]-graded A-module where 
Uj U, c Uj+i), then a left 1 Z j -graded U-module M is simultaneously a left U-module 
and /iii! j -graded A-module where UiM; E Mi+j- ;I’ is the category of left 1 Z) -graded 
U-modules where the morphisms are degree preserving graded U-module maps. 
Considering U with its degrees shifted shows that K has enough projectives to form 
projective resolutions. If L is a /ZJ-graded right U-module then with the usual 
grading on tensor product LB, M is a /Z/-graded A-module. Hence L.0, - is an 
additive functor from 3’ to the category of /Z/-graded A-modules and we may take 
its derived functors. Since a projective resolution of A4 in .X is also a projective 
resolution of M as a U-module with the grading ignored the derived functors of 
L @,, - applied to MC 3’ coincide with ordinary Tor y(L;, M). Again considering a 
projective resolution of M in ;U, Tort(L,M), the nth derived functor of L@, - will 
be a /h 1 -graded A-module. Thus for n, m E / Z j we have Tor?(L, M), and this gives 
the jZi-bigrading on Tor’/(L,M). This [Z(-bigrading on Tor’/(L,M) arises in com- 
puting Tor”(L,M) from the bar resolution since this is a resolution of M in X. 
Henceforth we shall work with the IZ\-bigrading on Tor’(L,M) as it arises from the 
bar resolution. 

The main result in this paper is: 

2.10. Theorem. Suppose U is a jZ/-graded A-algebra where UoaA and UE,N~~~. 
Let A have the trivial graded left and right U-module structures where A =A0 and 
UiA = 0 = AUi for 0 <i E Z. If Tor”(A, A) is a projective A-module then 
TorU(A,A)E,@iZ and 1 = Y(U)@(Tor’(A,A)) in S[[t]]. 

The next section will be devoted to the proof of this theorem. First some 
consequences. 

The theorem shows that @(Tor’(A, A)) only depends on the A-module structure 
of U since inverses are unique. Written down carefully this becomes: 

2.11. Corollary. Suppose U and V are liZI-graded A-algebras where (/o=A = V0 
and 0: VEJ@~. Let A have the trivial graded left and right U and V-module 
structures as in the theorem. Then @(To?(A, A)) = @(Tar ‘(A, A)) if L/z V as 
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graded A-modules and both Tor’(A, A) and Tor ‘(A, A) are projective A-modules. 

As the corollary shows the algebra structure on I/ does not’affect @(TorU(A, A)). 
Can we get away with no algebra structure on U? Suppose I/E _/(‘z, where WOzA as 
an A-module. Then there is a (unique) A-algebra structure on U where U0 = A and 
UIU,={O} for i,jEiN=(1,2,3 ,... }. With this trivial A-algebra structure on I/ we 
can form TorU(A, A). As a corollary (3.24) to our proof of Theorem 2.10 we shall 
see that for this algebra structure on U, Tor’/(A, A) is a projective A-module. Hence 
Theorem 2.10 applies and @(Tor’l(A, A)) gives the inverse to Y(U). In Corollary 
3.24 we explicitly give TorU(A, A) and @(Toro(A, A)). 

3. Proof of the theorem 

At first we collect results needed for the proof of the main theorem, then prove it. 
The next definition will make it easy to work with finite complexes without tacking 
on initial or final zeros and will avoid keeping track of degrees. 

3.1. Definition. Suppose 

.,. -+M-+N-+P+ . . . 

is a sequence of A-modules and module maps. If X is one of the modules we say that 
the sequence is a complex at X and define H(X) as follows: 

(a) If the sequence is only the module X then it is a complex at X and H(X) =X. 
(b) If X is a left end, i.e. the sequence begins 

XL Y (and possibly continues from Y), 

then it is a complex at X and H(X) = Ker E, a submodule. 
(c) If X is a right end, i.e. the sequence ends 

(possibly leading up to W and ending) W L X, 

then it is a complex at X and H(X)=Coker a, a quotient module. 
(d) If X is internal, i.e. the sequence contains 

(possibly leading up) W-?-+X2 Y (possibly continuing), 

then it is a complex at X if &a = 0; i.e. Ker E> Im a and H(X) = Im a/Ker E, a sub- 
quotient module. 

The sequence is a complex if it is a complex at each of its modules. In this case the 
module H(X) is defined for each module X in the sequence. 
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3.2. Lemma. Suppose that 

6 
M-N,-*.*---+N, 

is a complex where M and {N,}; and (H(N,))L are projective A-modules. Then: 
(a) Im 6 and Ker 6 = H(M) are projective A-modules. 
(b) If in addition M and {N,) are finitely generated A-modules then Im 6, 

Ker 6 = H(M) and { H(N;)}b are finitely generated A-modules. 
With S and [ ] as in (2. I), 

(-)“‘[Ml+ (-)'W,l= (->‘+‘WWI + ,Fo (- )‘tHV,)l (3.3) 

Proof. We proceed by induction on 1. The case t = -1 is not excluded. Here the 
complex is simply M and the assertions are trivially true. 

For t = 0 we have M”- No giving the exact sequences 

O-Im6-No-Cokerd-0 

(3.4) 

H(No) 
H(M) 

II 
O-Ker6-M-Im6-0 

(3.5) 

Projectivity of H(N,) implies that (3.4) is split. Hence No being projective implies 
that Im 6 is projective. No being finitely generated implies finite generation of 
Coker 6 = H(No) just as M being finitely generated implies finite generation of Im 6. 

Projectivity of Im 6 implies that (3.5) is split. Hence M being projective implies 
that H(M) is projective and M being finitely generated implies that H(M) is finitely 
generated. 

By (2.l.ii), (3.4) and (3.5) give 

[NOI = W(No)I + [Im sl a [M] = [H(M)] + [Im 61. 

Subtracting gives (3.3) for t = 0. 
Now suppose we have the complex 

6 & 
M-N,--~~~---No 

for tz 1 and the results have been proved for smaller t. Consider the complex 

M’--N;_,---+...---+N; 

/I 

(3.6) 

(3.7) 
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Then H(N,‘) = H(N,) for i = 0, . . . , I- 1 and so is projective by hypothesis. Also M’ 
and {Ni’}ilA are projective and by the induction Im E and Ker E = H(M’) are projec- 
tive. Also if {N,}; are finitely generated then so are Im E, Ker E = H(M’), { H(N,‘) = 
H(N,)} :I; and 

I- I r--I 

( - )‘[&I’] + ,co ( - )‘[N/] = ( - )'[H(iw')I + ,Fo ( - )'[H(N')I 

I/ I/ (3.8) 

I-I 
( - )‘[Ker ~1 + ,go ( - WWJI 

Consider MzKer E, since Im &CKer E. By what we have shown for t =0 
it follows that Im 6 and Ker s=H(M) are projective. This uses the fact that 
H(Ker E) = Ker .s/Im s=H(N,) is assumed to be projective. if M and Ker E are 
finitely generated then by the case t = 0: Im 6, Ker 6 = H(M) and H(Ker E) = H(N,) 
are finitely generated and 

[Ker E] -M= [H(Ker E)] - [H(M)] 

IH( 

Hence 

[Ml = W&WI - VW,)1 + Ker ~1. 

Adding this to or subtracting this from (3.8) gives (3.3) and completes the 
induction. 0 

3.9. Corollary. Under the hypothesis of (3.2) for i = 0, . . . , t - 1 the maps N;, I *Ni 
have projective image and kernel which are finitely generated if {Ni); are finitely 
generated. 

Proof. Apply the lemma to the complex N,_ 1 ~Ni-, .e. *N,. 0 

3.10. Definition. Suppose CE~~~~I’ (Definition 2.5). A sleeve job on C is an 
A-module map d: C + C of degree (-1,O) where d2 = 0 and the resulting homology 
is a projective A-module. Note, C= @,,tciZ, Cik and saying that d is of degree (-1,O) 
means that 

d(C;k) = (01 for i=O, 

CC;-l,k foriE/zj. 
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The picture to keep in mind is that of Diagram 1. 

second sleeve 

Diagram 1 

Since the homology with respect to d is assumed to be a projective A-module the 
individual summands H(C,k) are projective A-modules. The Clk are finitely 
generated projective A-modules; hence, by Lemma 3.2 each H(C,~)E.J. Thus if 
H(C) denotes the /Z’j-bigraded A-module @,,i,, 2 H(C,k) then H(C)E..K!“I’. 

3.11. Proposition. Suppose CE.2”’ and d is a sleeve job on C. Then 

@J(C) = @(H(C)). 

Proof. This is immediate from (3.3) and the definition of @ in (2.6). 0 

3.12. Proof of 2.10. Let C be the JiZ]-bigraded module with I/ as its zeroth column 
and zero elsewhere. That is 

Cik = 
Uk for i=O, 

{O} otherwise. 
(3.13) 

By Lemma 2.9(a), CE~&I~~’ and O(C)= Y(U). Hence it suffices to prove that 
1 = @(C)@(Toro(A, A)) in S([t]]. 

Define D as the /Z / -bigraded module where 

(3.14) 

where N denotes the set { 1,2,3, . . . }. 
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The lower left corner of D is given in Diagram 2. 
-------------_------------ 

U,@Ur@U,@U0 UQoU,oUloUzoUo 

0 0 
Row 4 101 UQOU.a@UQ U&U& Uz@ ue U&U,@ UZO U,O Uo 

0 0 

U@U,@U,0U0 UOO U20 U, 0 UI 0 Uo 
_--------------- ------- --- 

UOO Ui 0 Uz@ Uo 
Row 3 (01 UQc9 u30 uo 0 4l0~,0~,0~,0Gl 

~,@r/,@c’,0~0 
--------------_----------- 

Row 2 (0) %c9~20~0 oh@c’,@~l@~0 101 
---------_-------- -------- 

Row 1 (01 r/,0 u,o UQ (01 (01 
-------------------------- 

Row 0 uo1,o r/, 101 (0) (01 
--------------_----------- 

Column 0 Column 1 Column 2 Column 3 

Diagram 2 

If U+ = CJi@CJ2@U3@*.. and K, denotes the direct sum of the terms in the nth 

column for no jZ/, then 

K,=u,Q~+Q.-.Qu,+Quo (3.15) 

n-times 

as a graded A-module, where K, is graded by row and r/o@ @” U-0 U. has the 

usual grading on a tensor product. 

Identify U+ with U/U,, via the composite U+GU-+U/U,,. Consider the bar 

resolution of U. as a left U-module described in (2, pp. 280-2831. The n-th term is 

B,(U, Uo) in the notation of [2] and under the identification of U/U0 and I/’ 

B,(U,&)= U@~+@;@U,+@r/,. (3.16) 

n-times 

The boundary map [2, p, 281, (2.5)] is determined by 

B,(U, Uo) u&Ju,@*..@u,@p 

I I (3.17) 

B,-,(I/, Uo) i$, (-)‘uoO...Ou;-2O(Ui-,Ui)OUi+,0’.’OUnOP 

for uOE 0: uI, . . . . u, E U+, /3~ A = U,,. In the sum at (3.17) the expected final term 
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uO@-.-@un- ,@(u,J) is ostensibly missing. This is because the ‘u,,A’ is the module 
action of u, on k E A and not product in U of u, by A. Since U,E I/’ the module 
action ‘u,J is zero. Since U is a projective A-module the bar resolution gives a pro- 
jective resolution of Ue= A. The explicit description of the boundary map at (3.17) 
shows that the bar resolution gives a projective resolution of Lie in the category of 
graded left U-modules if B,(U, Ue) has the usual grading on tensor products. Now 
consider We as a graded right I/-module and apply the functor r/a&,- to the bar 
resolution to compute TorU(UO, r/e) =TorU(A, A) in the category of graded 

U-modules. The nth term of the complex is U&B,(U, U,) which by (3.16) and 
(3.15) is K,. From (3.17) the boundary map on the K,‘s is determined by 

K a@ur@..+@u,OP 

I I 
(3.18) 

K-1 ,~~(-)'aOU,0...~U,_20(Ui_,U;)~U;+,0...0U,OB 

for a,PcA=Uo, u, ,..., u,EU+. In (3.18) the expected first term (aul)@uz@...@ 

u,,@/3 is ostensibly missing for the reason given below (3.17). And for this same 
reason the map at (3.18) stands for the zero map when n = 1. 

This boundary map between the K,,‘s carries D,, to D,_ ,,,, hence gives a sleeve 
job on D. Since the homology of the complex {K,,]: is Tor’(A, A), we see by 

Theorem 3.11 that 

Q(D) = @(Tor”(A, A)). 

Next consider COD with the bigrading described in (2.7). Then 

(3.19) 

(COD),/ = @ U/o@ ” ’ @ Ujn@ U@ (3.20) 
,O+...+,“=l 

ioc Zl 
J,.....JnEN 

For C@D the nth column - @,elzl (C@D),i - is 

uo\v+o~.@u,+@u~ 

n-times 

(3.21) 

which we recognize as B,(U, U,). The boundary map of the bar resolution - given 
explicitly at (3.17) - gives a sleeve job on COD. Hence by Theorem 3.11 

@(H(C@D)) = @(COD). (3.22) 

The homology of this complex C@ D is the homology of the bar resolution of Ua, 
a graded projective resolution. Hence H((C@ D),,,,) = U. for n = 0 = m and is zero 
otherwise, From the definition of @ at (2.6) and the fact that Uo= A and [A] = 1 we 

get 
@(H(C@ D)) = 1. (3.23) 
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Putting together (3.23), (3.22), Lemma 2.9(b), (3.19) and Lemma 2.9(a), in the 
order indicated, gives 

1 = @(H(C@D)) = @(C@D) = @(C)@(D) 

= @(C)@(Tor”(A, A)) = (u(U)@(Tor”(A, A)). 0 

3.24. Corollary to 3.12. Suppose UE..C?~ is an A-algebra where UO= A and 
U+U+ = (0). Then Tor”(A, A) as a /ZI-bigraded module is given by 

Tori(A, A), = @ U,, 0 *.a 0 Uin. 
,,*...*,“=, 
,,*...,I “E hJ 

Hence TorU(A, A) is a projective A-module and @(Tor”(A, A)) = v(U)-’ in S[[f]]. 
Explicitly @(Tor”(A, A)) is given by 

@(To?(A, A))= i f ,=,,=,,,_,,g, =,(-w,~+J~~ 
n 

jl.....jnE)l 

= 1 -[rr,l~-~~u,l-~~,l’,~2-~~u,l -21~,l[U21f~Li113Y3 

Proof. As mentioned between (3.17) and (3.10) the complex D= @,, - K, 
computes Tor”(A, A) and the boundary map is given at (3.18). By the assumption 
that U’U’= (01, the boundary map at (3.18) is the zero map. Hence the homology 
is the complex, i.e. 

Tor”(A, A) = H(D) = D, 

proving the first assertion, since the Llc’s in D, (3.14), can be omitted. The formula 
for @(Tor”(A, A)) is the direct result of the definition of @ in (2.6). C 
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